

© 2008 360Data
http://www.360data.nl

1

Consuming a SQL 2005 Native Web Service from an ASP.NET
application

SQL Native Web Services Part 2

In the first article in this series I showed how to create and configure a basic web
service in SQL Server 2005 using SQL Native Web Services. In this follow-up I’ll
describe the steps necessary to call this data and display it in a web browser using
ASP.NET.

If you haven’t already done so, follow all the steps in part one to create the web
service as we’ll be using it presently.

Getting started

All the ASP.NET functionality you’ll need for this example is available in the free
Visual Web Developer 2008 IDE, so that’s what I’ll be describing in this article. The
steps are all but identical using Visual
Studio 2005 or later, however, with the
.NET Framework 3.5 installed.

Start a new “ASP.NET Web Site” project
and choose Visual Basic as the project
language.

Adding the web reference

In the Solution Explorer, right-click on the
project name and select ‘Add Web
Reference…’ from the context menu.

http://www.360data.nl/EN/Docs/080215_NativeWS01.aspx

2

Enter the URL for the WSDL file (as described in Part 1) and enter your domain
credentials when prompted for a user name and password. You should now see the
“WebTest” web reference with “WS01” listed as its only method.

(If you have problems accessing this, you may want to check/disable your Internet
Explorer/Windows proxy settings).

Click “Add Reference”. Note the name you give to the web reference – by default
this has the imaginative name “WebReference” (and the listed examples) but if you
change it you’ll need to change the code listed below too. In the Solution Explorer
you’ll now see a new folder “App_WebReferences” with a number of subfolders and
the lowest level the WSDL file for the testWS web service.

The data table

Open the Default.aspx page and add a basic GridView control and enable the
AutoGenerateColumns property.

<form id="form1" runat="server">

…

<asp:GridView ID="gv1" runat="server"

AutoGenerateColumns="true"></asp:GridView>

…

</form>

© 2008 360Data
http://www.360data.nl

3

Adding the code to populate the grid

Open the code-behind page Default.aspx.vb. Add the namespace references as
follows:

Imports WebReference.WebTest ' Change “WebReference” as appropriate

Imports System.Net

Imports Microsoft.VisualBasic

Imports System.Data.SqlTypes

Now add a Page_Load event:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As _

System.EventArgs) Handles Me.Load

 Dim WSRequest = New WebReference.WebTest()

 Dim ResultSet As Object

 ' Pass Windows login to web service

 WSRequest.Credentials = System.Net.CredentialCache.DefaultCredentials

 ' Call web method

 ResultSet = WSRequest.WS01()

 ' Bind resulting data to control

 gv1.DataSource = ResultSet

 gv1.DataBind()

End Sub

The “WSRequest.Credentials” line is where we define the use of the Windows login.
In the previous article we’ve given the login/user BEDROCK\Fred access to the web
service. Here, we instruct the web app to pass the current user’s Windows login
details to the web service, so if BEDROCK\Fred is logged in on the client machine he
shouldn’t meet with any problems.

Hit F5 to run your app in
debug mode et voilà…your
SQL list is displayed in a
(somewhat untidy looking)
table in your web browser.

Try changing the SQL data in
the Management Studio
and then refreshing your
browser; the data changes
are immediately reflected in
the browser table.

4

Making things interesting

What we’ve now got is a static display of data. It’s useful up to a point, perhaps, but
limited. What if we want to filter the data and control the filter from the browser?

The first thing we’ll need is a new SQL stored procedure that accepts a parameter in
order to filter the data.

USE [TestDB]
GO

CREATE procedure [dbo].[stWSQuery2]

 @p_CustNr int

as
begin

 -- Parameter validations

 if not exists (select 1
 from tbTestData
 where CustNr = @p_CustNr)
 begin
 raiserror ('ERROR: No matching customer number found.', 10, 1)
 return @@error
 end

 select CustNr, OrderNr, OrderDate, Processed
 from TestDB.dbo.tbTestData
 where CustNr = @p_CustNr

end

If we try this out in the SQL Management Studio we get two records:

© 2008 360Data
http://www.360data.nl

5

The next step is to add this SP as a method to our existing web service:

ALTER ENDPOINT WebTest
FOR SOAP
 (add webmethod 'WS02'
 (name='TestDB.dbo.stWSQuery2',
 schema = standard,
 format=rowsets_only),
 wsdl = default,
 schema = standard,
 database= 'TestDB')

Grant permissions as before and the SQL preparations are completed. Now go back
to Visual Web Developer. Right-click on ‘WebReference’ in the Solution Explorer and
choose ‘Update Web/Service References’ from the context menu. We need to do
this to be able to call the new method we’ve just added.
Add this code to your Default.aspx, just above the GridView code:

 <div id="dd">

 <asp:Label ID="lab1" runat="server"

Text="Customer Number:">

</asp:Label>

 <asp:DropDownList ID="dd1" runat="server" AutoPostBack="true">

 <asp:ListItem Text="1005" Value="1005"></asp:ListItem>

 <asp:ListItem Text="1010" Value="1010"></asp:ListItem>

 <asp:ListItem Text="1012" Value="1012"></asp:ListItem>

 <asp:ListItem Text="1013" Value="1013"></asp:ListItem>

 </asp:DropDownList>

 </div>

This gives us a four-item drop-down box with one item per Customer Number. In this
example it’s hard-coded, just to keep things short and simple, but you could
populate this list in turn from a web service or an ASP.NET SQLDataSource doing a
SELECT DISTINCT on the tbTestData table. For now, let’s just leave it like this.

We also need to make a few changes to our old Page_Load event handler:

Protected Sub Page_Load(ByVal sender As Object, ByVal e As _

System.EventArgs) Handles Me.Load

 Dim WSRequest = New WebReference.WebTest()

 Dim ResultSet As Object

 Dim p_CustNr As SqlInt32

 ' Default range

 p_CustNr = 1013

 ' Pass Windows login to web service

WSRequest.Credentials = System.Net.CredentialCache.DefaultCredentials

 ' Call web method

 ResultSet = WSRequest.WS02(p_CustNr)

 ' Bind resulting data to control

 gv1.DataSource = ResultSet

 gv1.DataBind()

End Sub

6

…and lastly, an event handler is needed for the drop-down update:

Protected Sub dd1_SelectedIndexChanged(ByVal sender As Object, ByVal e As_

System.EventArgs) Handles dd1.SelectedIndexChanged

 Dim WSRequest = New WebReference.WebTest()

 Dim ResultSet As Object

 Dim p_CustNr As SqlInt32

 p_CustNr = dd1.SelectedValue

 WSRequest.Credentials = System.Net.CredentialCache.DefaultCredentials

 ResultSet = WSRequest.WS02(p_CustNr)

 gv1.DataSource = ResultSet

 gv1.DataBind()

End Sub

Running this app now displays a table filtered on the value selected in the drop-
down. Selecting a different value from the drop-down updates the table.

We’ve now got a web service running natively in SQL exposing a parameterized
stored procedure, and an application that passes that parameter to the web service
and displays the resulting data.

Paul Clancy
360Data
http://www.360data.nl

Links

Providing SQL data as a web service using SQL Server 2005 Native Web Services
http://www.360data.nl/EN/Docs/080215_NativeWS01.aspx

Visual Web Developer 2008 Express Edition
http://www.microsoft.com/express/vwd/

.NET Framework 3.5
http://msdn2.microsoft.com/en-us/netframework/default.aspx

http://www.360data.nl/EN/Docs/080215_NativeWS01.aspx
http://www.microsoft.com/express/vwd/
http://msdn2.microsoft.com/en-us/netframework/default.aspx

